【图像分割】基于改进的模糊聚类WFCM算法实现图像分割matlab代码

wuchangjian2021-11-03 20:57:56编程学习

1 简介

模糊 C 均值聚类(FCM)算法是一种基于非监督聚类算法。样本加权模糊 C 均值聚类(WFCM)算法是 FCM 算法的改进,该算法能够明显提高收敛速度和聚类的准确性。无论是 FCM 算法还是 WFCM 算法,对噪声都相对敏感,而且聚类数目仍然需要人工确定。在此提出一种改进算法,首先通过偏微分方程(PDE)降噪算法对原始脑 MRI医学图像进行处理;其次利用聚类有效性确定最佳聚类数目,对 WFCM 算法进行改进;最后利用本文改进算法对图像进行聚类分割。实验表明,该方法是一种具有自动分类能力、抗噪性较好的模糊聚类图像分割算法。

2 部分代码

%% Image segmentation by WFCM
% WFCM refer to 'Fuzzy cluster analysis and its application' by Teacher
% Gao, Published by xidian
% we first implement one thresholding segmentation, then auto
% multi-thresholding
% we also used two-dimentional gray histogram
% Algorithm by Teacher Xinbo Gao, implemented by Lin Zhao, VIPS Lab;
%% Code Follows
clear;clc;close all;
inputim = imread('TestImage\lena.bmp'); inputim = rgb2gray(inputim);
figure;imshow(inputim,[]);
% count 1D histogram or 2D histogram
[h,x] = imhist(inputim); figure;stem(x,h);
nst = imhist2(inputim);
count = 0:1:255;
% count = nst;
% compute the weighted coefficient wi
w = h'./sum(h');
% iteration to compute the center of clustering,here c=2
vc1 = 64; vc2 = 192; % initialization
v1 = 0; v2 = 0; n = 0;
while (abs(v1-vc1)>2)||(abs(v2-vc2)>2)
   if n ~= 0
       vc1 = v1; vc2 = v2;
   end
   % update uij
   for j = 1:1:2
       if j == 1
           vc = vc1;
       else
           vc = vc2;
       end
       for i = 1:1:256
           dij = norm(count(i)-vc);
           di1 = norm(count(i)-vc1);
           di2 = norm(count(i)-vc2);
           u(i,j) = (dij/di1).^2+(dij/di2).^2;% m = 3
           u(i,j) = 1/u(i,j);
       end
   end
   for i = 1:1:256
       for j = 1:1:2
           if isnan(u(i,j))
               u(i,j) = 0;
           end
       end
   end
   % update vj
  x1 = w.*u(:,1)'.^3.*count;
  x1 = sum(x1);
  y1 = sum(w.*u(:,1)'.^3);
  v1 = x1/y1;
  x2 = w.*u(:,2)'.^3.*count;
  x2 = sum(x2);
  y2 = sum(w.*u(:,2)'.^3);
  v2 = x2/y2;
  n = n+1;
end
% compute the threholding
t = (vc1+vc2)/2;
T = repmat(t,size(inputim,1),size(inputim,2));
outputim = inputim>T;
outputim = double(outputim);
figure;imshow(outputim,[]);

3 仿真结果

4 参考文献

[1]陈梅, and 王健. "基于改进模糊C-均值聚类算法的图像分割." 现代电子技术 30.13(2007):2.

图片

相关文章

Nginx跨域问题的原因分析

Nginx的跨域问题解决 这块内容,我们主要从以下方面进行解决ÿ...

深度学习核心技术精讲100篇(八十)-脏数据如何处理?置信学习解决方案

深度学习核心技术精讲100篇(八十)-脏数据如何处理?置信学习解决方案

前言   在实际工作中,你是否遇到过这样一个问题或痛点:无论是通过哪种方式...

当aws ping 不通时可以怎么解决

当aws ping 不通时可以怎么解决

作者:SmartMax 链接:https://www.zhi...

零基础学python保姆级教程——if语句

上一篇我们讲到了倒叙,接下来我们讲元组,有关于列表ÿ...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。