当前位置: 首页 > news >正文

偶数科技:基于OushuDB的新一代云原生湖仓一体为企业助力

实时性数据分析需求暴增,偶数湖仓一体为企业助力

在愈发复杂的大数据场景下,数据仓库与数据湖各自的弊端开始显现,湖仓一体架构走向舞台中央。在国外有两种流行的实现数据湖仓的技术,他们分别是基于数据仓库和基于数据湖的解决方案,他们的代表分别是Snowflake和Databricks。 去年11月,双方曾就两者性能差异吵得不可开交,作为大数据分析赛道的代表性厂商,不论是具备数据仓库功能的数据湖工具Databricks,还是借鉴数据湖范式的可扩展数据仓库Snowflakes,其发展路线都说明“湖仓一体化”已成为了目前市场主流的技术发展方向。

虽然业界对于湖仓一体的价值是高度认同的,但作为一种新兴的架构,大多数公司对于湖仓一体仍处在初期的探索阶段,有些企业甚至对于要选择怎样的湖仓一体架构仍旧是云里雾里。很多人难免会问,我们到底需要什么样的湖仓一体?

1 当下企业实时性数据分析需求暴增
随着网络的高速发展,产生的数据也爆炸性增长,企业对数据的使用也逐步从离线场景到实时数据分析场景的转变。刚开始,很多企业主要是利用离线场景对历史数据进行分析,而随着业务发展到一定规模以后,离线数据的缺点就愈发凸显,公司的业务方、决策方对实时化数据提出了更高的诉求,希望从业务端获取到数据以后,便能够立即被清洗处理,从而满足基于数据的事前预测、事中判断和事后分析。

实时数据分析的需求场景一般分为四个层面:

运营层面:实时业务变化、实时营销效果、当日业务趋势分析;
用户层面:搜索推荐排序、实时行为等特征变量的生产,为用户推荐更精准的内容;
风控层面:实时风险识别、反欺诈、异常交易等;
生产层面:实时监控系统的稳定性和健康状况等。
不难发现,无论是互联网企业还是传统企业,数据的时效性都被摆在了重要位置,甚至有些企业已经从 PV、UV 指标等单点实时化进阶到了全面实时化的阶段。也正于因此,数据的时效性也就成为了企业判断自身架构设计是否满足真正湖仓一体的关键因素。

总体来看,企业到底需要怎样的湖仓一体架构?除了要满足实时化数据需求这一关键要素以外,数据一致性、超高并发、云原生、支持多类型数据以及一份数据也被列入了湖仓一体的 ANCHOR 六大特征。

2 基于OushuDB的云原生湖仓一体
如前文所言,随着市场竞争和用户需求的不断变幻,企业对于数据的时效性需求不断攀升,但实时数据的分析场景出现以后,也给数据技术的实现带来了很大的挑战。目前,无论是擅长事务型工作的数据仓库,还是数据类型更为丰富的数据湖,亦或是 Hadoop+MPP 模式下的湖仓分体,其都是基于 T+1 设计的,即便引入了流处理引擎实现了部分固定模式的实时分析,仍无法达到 T+0 全实时的水平。

为了让数据实现全面实时化,行业内也衍生出了不同的湖仓一体方案,可以将其大致分为两类:一类是基于Hadoop 的改造方案,拿 Hudi、Iceberg 两款开源数据湖项目为例,结构化、半结构化及非结构化的数据通过SparkSQL/Flink 引擎不断流转与计算,再基于 HDFS/S3 实现事务存储,但此类方案在性能支持上与 Hadoop 的区别并不大;

另一类则是从新的基础架构发展出的云原生数据仓库,其中比较典型的代表有 Snowflake、OushuDB 方案,二者均突破了传统 MPP 和 Hadoop 的局限性,实现了存储和计算的完全分离,并且通过虚拟计算集群技术,其单个集群可以达到数万节点,同时在复杂查询性能和 SQL 兼容性上也非常完善。在国外,Snowflake 可以算作落地湖仓一体的成功先例之一,而偶数科技围绕 OushuDB 提出的湖仓一体解决方案,也成为国内该赛道中的一颗耀眼的新星。

若想了解 OushuDB 性能的强大之处,我们大抵可以从以下这组公开数据中窥知一二:由于 OushuDB 使用了SIMD(单指令多数据流)的执行器优化策略,其全面性能超过 Spark 性能相差 8 倍以上,最大相差 55 倍。通过横向对比几类湖仓一体解决方案,我们发现,在 T+0全实时方面,基于 OushuDB 的方案也展现出了较大的优势。





3 为什么偶数科技的实时湖仓性能卓越?
那么问题来了,偶数科技是如何实现具备实时能力的湖仓一体架构?我们可以先从 Lambda 以及 Kappa 这两种典型架构的优劣说起。

为了能够让流处理与批处理配合使用,Lambda 架构应运而生,基于这套架构,任务可以根据是否需要被实时处理进行分离,然而,这套架构背后也隐藏了很多问题。首先,离线和实时两套方案会产生不同的计算结果,当发生数据产生不一致问题时,对比排查需要花费较长时间。此外,由于 Lambda 架构由多个引擎和系统组成,其学习成本、运维成本也相对较高。

可见,Lambda 架构在开发割裂感、资源重复、集群维护成本以及数据一致性等问题上存在较大的问题。为了解决 Lambda 架构需要维护两套代码的难题,Kappa 架构又出现了,即在 Lambda 架构的基础上移除了批处理层,利用流计算的分布式特征,加大流数据的时间窗口,统一批处理和流处理,最终处理后的数据可以直接给业务层使用。相比之下,虽然 Kappa 架构的优点显而易见,但其也存在以下两方面的缺点:

依赖 Kafka 等消息队列来保存所有历史,而 Kafka 难以实现数据的更新和纠错,发生故障或者升级时需要重做所有历史,周期较长;
Kappa 依然是针对不可变更数据,无法实时汇集多个可变数据源形成的数据集快照,不适合即席查询。
面对 Lambda 架构与 Kappa 架构的局限性,业内也亟需一种新型技术架构来满足企业的实时分析需求。为此,偶数科技在 2021 年初提出了同时满足实时流处理、实时按需分析以及离线分析的 Omega 架构,其是根据流数据处理系统和实时数仓构成的。





需要强调的一点是,在 Omega 架构中需要变更流处理版本时,不再需要流处理引擎访问 Kafka,直接访问OushuDB 即可获得所有历史数据,这样一来,便规避了 Kafka 难以实现数据更新和纠错的问题,大大提升了数据处理的效率。在 Omega 全实时架构的加持下,偶数科技实现了具备实时能力的湖仓一体,即实时湖仓。

4 行业的广泛认可与偶数的持续创新
尽管OushuDB只是一个诞生5年的云数据库,但OushuDB却是由国内顶尖工程师自主开发,其研发团队曾主导国际顶级的数据库开源项目,符合国家信创标准。偶数科技作为一家新兴的数据库公司,自2017年诞生以来,作为微软加速器和腾讯加速器成员企业,已经获得世界顶级投资机构红杉中国、腾讯、红点中国与金山云的四轮投资,并入选福布斯中国企业科技 50 强以及美国著名商业杂志《快公司》中国最佳创新公司 50 强。

除了OushuDB,偶数科技的实时湖仓一体解决方案还包含自动化机器学习平台 LittleBoy 、数据分析与应用平台Kepler以及数据管理平台 Lava等多个产品, 深厚的研发实力和优秀的产品性能吸引了广泛的知名用户群,目前已在金融、电信、制造、公安、能源和互联网等行业得到广泛的部署和应用。

 

相关文章:

  • 单调队列算法总结
  • React组件设计模式-纯组件,函数组件,高阶组件
  • NumPy数组维度
  • QA | SWCF2022 笔记:卫星传输链路中的关键技术分享
  • HIFI测序揭示拟南芥MSH1参与介导的细胞器基因组重组与变异积累规律
  • DBW*的trace文件过大的bug
  • Java中的final关键字,你清楚吗?
  • LeetCode-1775. 通过最少操作次数使数组的和相等【贪心,数组,计数】
  • 【JavaScript】——“重学前端”重点学习笔记之——模块一——06JavaScript执行——闭包和执行上下文
  • 【Windows篇】Telnet指令介绍以及telnet测试端口连接示例
  • C语言——计算数组长度
  • ARM ACP
  • 练习题(12-06)
  • LaTex使用技巧9:argmin / argmax下标写法
  • HTML期末学生大作业-拯救宠物网页作业html+css
  • 阿里云ssl免费证书申请
  • 【C++】C++11新特性
  • 社区疫情防控系统毕业设计,社情疫情防控系统设计与实现,毕业设计怎么写论文源码开题报告需求分析怎么做
  • MemoryAnalyzer分析线上OOM异常
  • 前端面试题合集
  • c++primer 第9章 顺序容器
  • 储能系统拆解及储能芯片(2) - 电动车储能
  • Linux系统下adb驱动安装步骤 及 问题总结
  • 深度学习与机器学习的区别
  • 如何对文档进行分类
  • 分子骨架跃迁工具DiffLinker评测
  • Docker容器——harbor私有仓库部署与管理
  • MYSQL必知必会笔记:第十一章使用数据处理函数
  • GC IOS Client教程(详细版)
  • 12款开源数据资产(元数据)管理平台选型分析(一)
  • 2023年重庆高考588分能报什么大学 588分能上哪些院校
  • 2023年山东春季高考考试时间 什么时候考试
  • 单招被调剂可以不去吗 还能高考吗
  • 2023湖南双一流大学名单 湖南哪所学校好
  • 中专考大学要考什么科目 内容有哪些
  • 预计2023国家专项计划录取分数线是多少
  • 2021年浙江工商大学杭州商学院学费是多少 各专业收费标准
  • 神经科学专业课程有哪些
  • 2023软件工程专业课程有哪些 就业方向是什么
  • 现在进行时结构是什么 怎么构成的